OPI — Open Perimeter Interface
Version 1.1

Contents

1

Preamble

1.1 Document History e
1.2 Document Future L e e
1.3 Conventions L e
1.4 Usage

N NN N

Data Types

opiStaticStimulus L
opiTemporalStimulus
opiKineticStimulus L

w w W

S

Functions 4
opilnitialize(...) L 5
opiSetBackground(lum, color, ...) 6
opiPresent(stim, ...) 7
OPICIOSE(Len) v v o 10
opiQueryDevice(...) 11

Other functionality 11

Server side 12
A.1 OPI Communications Protocol e 12
A2 Anexample SeSSION L e e e e 13

1 Preamble

This document describes a standard set of R functions and classes for interfacing with a perimeter (an instrument
for examining visual fields). It began existence at the First Octopus Research Meeting held in Tiibingen in July
2010, which was hosted by Prof. Ulrich Schiefer (University of Tiibingen), and Matthias Monhart (Haag-Streit). R
code that implements this interface should provide the set of functions described.

1.1 Document History

0.0 3 Jul 2010 Began in Hotel Hospiz, Tiibingen by Andrew Turpin.

0.1 7 Jul 2010 Complete rewrite with feedback from Janko Dietzsch and Shaban Demirel.

0.2 17 May 2011 Redraft by Andrew Turpin based on extensive feedback over a few rounds from
Paul Artes and Shaban Demirel.

0.3 9 July 2011 image added to stimuli and a few errors in examples fixed by Turpin.

0.4 19 September 2011 Turpin added “next” to opiPresent (to allow efficiencies on projection systems)
and changed arguments to opiPresent to lists.

0.5 20 September 2011 Turpin on advice from Jim Cassidy added opiQueryDevice function.

1.0 16 September 2014 After several companies expressed interest in supporting the OPI on their
perimeter during IPS 2014 (New York), and versions for the HEP and Octopus
900 need to be revised, Turpin added the first Appendix describing a server side
version to support the OPI.

1.1 1 July 2017 The advent of real-time eye tracking in perimeters means that opiInitialize
and opiClose can now return meaningful data. After discussions with Alberto
Rosso (CenterVue) at WGC 2017 in Helsinki, Turpin has altered the return
types for these commands to a list, which is backwards compatible.

1.2 Document Future

It is expected that this document will be revised at meetings of the Imaging and Perimetry Society.

1.3 Conventions

All (z,y) coordinates are Cartesian relative to the fixation point (0,0) in degrees of visual angle (not radians).
Positive y-coordinates refer to stimuli in the superior field. Positive x-coordinates refer to locations “east” of
fixation (temporal for the Right eye, nasal for the Left).

For “traditional” perimetry, where stimuli are projected spots, the diameter of the spot is in degrees of visual
angle, hence a Goldmann Size IT1I would have size = 0.43. The luminance of the spot is in cd/m?, thus the total
luminance on a projection system is this plus the background luminance, while on a CRT system, the spot would
“override” the background luminance. Spot luminance is not specified in dB or apostilbs, etc.

When the stimuli is an image, size becomes a scaling parameter and luminance is specified in the image itself.

All times are in milliseconds.

1.4 Usage

An implementation of this interface as a minimum should support the basic types and functions below. It may
be the case that specific implementations provide more functionality than that described here, and that is great!
For more sophisticated stimuli (eg ramping of a static stimulus), subclass the existing types and write your own
presentation methods.

2 Data Types

opiStaticStimulus

stim <- list(x, y, image=NA, level, size=0.43, color="white",
duration=200, responseWindow=1500, ...)
class(stim) <- "opiStaticStimulus"

X
y

image

level

size

color

duration
responseWindow

x coordinate of the center of stimulus in degrees relative to fixation

y coordinate of the center of stimulus in degrees relative to fixation

an image to display in a machine specific format

stimulus level in cd/m? (ignored if !'is.na(image))

diameter of target in degrees, or scaling factor for image if specified
machine specific stimulus color settings (ignored if 'is.na(image))
total stimulus duration in milliseconds

maximum time (>= 0) in milliseconds to wait for a response from the
onset of the stimulus presentation

machine specific parameters

opiTemporalStimulus

stim <- list(x, y, image=NA, lut, size=0.43, color="white", rate, duration,
responseWindow=1500, ...)
class(stim) <- "opiTemporalStimulus"

X
y
image
lut

size
color
rate
duration

responseWindow

x coordinate of the center of stimulus in degrees

y coordinate of the center of stimulus in degrees

TRUE for lut containing images, FALSE for luminances

if image is FALSE then this is a lookup table (vector) for stimulus level
at each step of rate Hz in cd/m?. If image is TRUE, then this is a
list of images, in the same format as image, that is stepped through at
rate Hz.

diameter of target in degrees, or scaling factor for images

machine specific stimulus color settings (ignored if image)

frequency with which lut is processed in Hz

total length of stimulus flash in milliseconds. There is no guarantee that
duration mod |lut|/rate == 0. That is, the onus is on the user to
ensure the duration is a multiple of the period of the stimuli.
maximum time (>= 0) in milliseconds to wait for a response from the
onset of the stimulus presentation

machine specific parameters

opiKineticStimulus

stim <- 1ist(path, images=NA, levels, sizes, colors, speeds, |
class(stim) <- "opiKineticStimulus"

path list of (x,y) coordinates in degrees that is usable by xy.coords ()

image imagel[i] is the image to display (in a machine specific format)
in the section of the path specified by path[i]..path[i+1].

levels if is.na(image) then levels[i] is the stimulus level in cd/m?
in the section of the path specified by path[i]..path[i+1].

sizes sizes[i] is the size of stimulus (diameter in degrees) to use for
the section of path specified by path[i]..path[i+1], or a scaling
factor for images[i].

colors colors[i] is the color to use for the stimulus in the section of
path specified by path[i]..path[i+1]. Machine specific values.
Ignored if !'is.na(image).

speeds speeds[i] is the speed (degrees per second) for the stimulus to
traverse the path specified by path[i]..path[i+1].
machine specific parameters

3 Functions

For functions that use machine specific parameters, it is recommended that you prefix your parameter names with
a unique, machine specific code so that the function can be called without alteration on several implementing
machines.

opilnitialize(...)

Arguments:
machine specific parameters.

Description:

This function specifies any machine specific parameters that are necessary to get the machine into a state for
accepting further commands. It must be called before any other OPI functions. If it is not called, the behaviour of
all other OPI functions are not defined.

Value:
opilnitialize returns a list containing at least the following component. Machine specific implementations
may have more components in the list.
err NULL if succeeded without error, machine specific error code otherwise.
Note that for backwards compatibility, it is also acceptable for this function to return NULL when there is no
error.

Examples:

ret <- opilnitialize("SL") # Put the HFA I into Slave mode
if (!is.null(ret) && 'is.null(ret$err))
stop(paste("OPI Error initializing machine:",ret$err))

opiSetBackground (lum, color, ...)

Arguments:
lum Set background illumination to lum cd/m?. lum= 0 is no background
illumination.
color machine specific background color
machine specific parameters.

Description:
This function sets the background of the perimeter.

Value:
error NULL if succeeded without error, machine specific error code otherwise.

Examples:
ret <- opilnitialize()

if ('is.null(ret) && !is.null(ret$err))
stop(paste("0OPI Error initializing machine:",ret$err))

opiSetBackground (100, "yellow") # SWAP (blue-on-yellow) background
opiSetBackground (10, "white") # HFA white-on-white background
err <- opiSetBackground(10, "white")

if (!is.null(err))
stop(paste("OPI Error setting background:",err))

opiPresent(stim, ...)

Arguments:

stim a list of instances of opiStaticStimulus, opiTemporalStimulus, or
opiKineticStimulus. If stim is NULL then the machine simply returns
its status (as defined by the machine) in the err field and does not
present any stimuli.

next=NULL a list of instances of opiStaticStimulus, opiTemporalStimulus, or
opiKineticStimulus that are the stimuli to present after stim.
machine specific parameters.

Description:
Generic function for presentation of stimulus stim. Should contain implementations for the three possible classes
of stim:

e opiPresent.opiStaticStimulus(stim, ...),
e opiPresent.opiTemporalStimulus(stim, ...), and

e opiPresent.opiKineticStimulus(stim, ...).

opiPresent is “blocking” in that it will not return until either a response is obtained, or at least the responseWindow
milliseconds has expired. (Note that more time might have expired.) Specifying next allows the implementing ma-
chine to use the time waiting for a response to stim to make preparations for the next stimuli. (For example
retargeting the projector or moving aperture and/or filter wheels.) There is no guarantee that the next call to
opiPresent will have next as the first argument; this should be checked by the machine specific implementations.

Value:
opiPresent returns a list containing at least the following components. Machine specific implementations may
add components to this list.
err NULL if no error occurred, otherwise a machine specific error message.
This should include errors when the specified size cannot be achieved by
the device (for example, in a projection system with an aperture wheel
of predefined sizes.) If stim is NULL, then err contains the status of
the machine.
seen TRUE if a response was detected in the allowed responseWindow,
FALSE otherwise.
time The time in milliseconds from the onset of the presentation until re-
sponse from the subject if seen is TRUE. If seen is FALSE, this value
is undefined.

Examples:

ret <- opilnitialize()
if ('is.null(ret) && !is.null(ret$err))
stop(paste("OPI Error initializing machine:",ret$err))

HFA white-on-white background and Goldmann Size III 10dB stimulus
10dB == 1000 aps == 318.3 cd/m"2
BUG? check is it 318 - 10 for the background?
opiSetBackground(10, "white")
stim <- list(x=-3, y=-3, level=318, size=0.43, color="white",
duration=500, responseWindow=1500)
class(stim) <- "opiStaticStimulus"
result <- opiPresent(stim)
if (!'is.null(result$err))
stop(paste("OPI Error:", result$err, "presenting", stim))
if (result$seen)

print(paste("Saw stimulus in",result$time,"milliseconds.")
else
print("Did not see stimulus.")

HFA white-on-white background and Goldmann Size III 10dB stimulus
at (-3,3) followed by a 10dB stimulus at (9,9)
opiSetBackground (10, "white")
stiml <- list(x=-3, y=-3, level=318, size=0.43, color="white",
duration=500, responseWindow=1500)
stim2 <- list(x=9, y=0, level=318, size=0.43, color="white",
duration=500, responseWindow=1500)
class(stiml) <- "opiStaticStimulus"
class(stim2) <- "opiStaticStimulus"
result <- opiPresent(stiml, stim2)
if ('is.null(result$err))
stop(paste("0OPI Error:", result$err, "presenting", stiml))
if (result$seen)
print(paste("Saw stimulus in",result$time,"milliseconds.")
else
print ("Did not see stimulus.")
result <- opiPresent(stim2)
if (!'is.null(result$err))
stop(paste("0OPI Error:", result$err, "presenting", stim2))
if (result$seen)
print(paste("Saw stimulus in",result$time,"milliseconds.")
else
print ("Did not see stimulus.")

A Size III white kinetic stimuli on
a bilinear path {(27,27), (15,20), (0,0)}
stim <- list(path=list(x=c(27,15,0), y=c(27,20,0)),
sizes=rep(0.43,2),
colors=rep("white",2),
levels=rep(318,2),
speeds=c(4,3))
class(stim) <- "opiKineticStimulus"
result <- opiPresent(stim)
if (!'is.null(result$err))
stop(paste("0OPI Error:", result$err, "presenting", stim))
if (result$seen)
print (paste("Saw stimulus in",result$time,"milliseconds.")
else
print("Did not see stimulus.")

A Size III flickering with a 10Hz square wave at
location (7,7) with luminance 10 dB (HFA)
stim <- list(x=7, y=7, size=0.43, color="white",
rate=20, # one lut step per 50 ms
lut=c(0,318), # so one full lut per 100 ms == 10Hz
duration=400, # and 4 cycles per stimulus
responseWindow=1500)
class(stim) <- "opiTemporalStimulus"
result <- opiPresent(stim)
if (!'is.null(result$err))
stop(paste("OPI Error:", result$err, "presenting", stim))

if (result$seen)
print(paste("Saw stimulus in",result$time,"milliseconds.")

else
print ("Did not see stimulus.")

An FDT patch at location (7,7)
with luminance 10 dB (HFA units)
TODO

opiClose()

opiClose(...)

Arguments:
machine specific parameters for ending a session.

Description:
Close the session, perhaps returning the machine to its normal state.

Value:
opiClose returns a list containing at least the following component. Machine specific implementations may
have more components in the list.
err NULL if succeeded without error, machine specific error code otherwise.
Note that for backwards compatibility, it is also acceptable for this function to return NULL when there is no
error.

Examples:
ret <- opilnitialize()

if ('is.null(ret) && !is.null(ret$err))
stop(paste("OPI Error initializing machine:",ret$err))

some other things in here
ret <- opiClose()

if ('is.null(ret) && 'is.null(ret$err))
stop(paste("OPI Error closing machine:",ret$err))

10

opiQueryDevice(...)

Arguments:
machine specific parameters.

Description:
This function returns information about the perimeter that might be required for determining stimuli, etc. For
example, the maximum and minimum x and y coordinates, the maximum brightness, the version number, etc.

Value:
a list of machine specific values.

Examples:

ret <- opilnitialize()
if (!is.null(ret) && !'is.null(ret$err))

stop(paste("0OPI Error initializing machine:",ret$err))
info <- opiQueryDevice()

4 Other functionality

It is expected that as perimeters evolve, new aspects of machines will be considered “standard” and will make their
way into this document.

One particular innovation that is not covered in this API is that of gaze monitoring via video camera. Currently
it is expected that information about gaze during a presentation will be available as part of the list of values returned
by opiPresent.

11

A Server side

For new devices wishing to support the OPI, we would recommend that the device implement a simple TCP/IP
socket protocol that can then be supported by the OPI R package that implements the OPI standard. This
appendix outlines a simple protocol that would be required. The protocol can be enhanced to support machine
specific features as required, and the details of the message data would obviously need to be specified per machine.

The messages are passed to the server as space delimited text strings of the format command parameters, and
get a return message of the form {0K | ERR} data. The next two tables specify these two messages.

A.1 OPI Communications Protocol

Command Param’s Description Return data
OPI-SET-MODE x x > 0 indexes the stimuli types available on the ma- None

chine, for example SAP, FDF, FDT, and so on. As

many values as necessary can be used. The modes

can also include machine dependent features such as

turning eye tracking on/off, toggling automatic chin-

rest support, and so on.
OPI-SET-FIXATION x x coordinate of fixation in degrees None

y y coordinate of fixation in degrees
t t > 0 is and index into fixation marker types sup- None
ported by the machine (including “off”)
OPI-SET-BACKGROUND c Machine specific color codes None
OPI-PRESENT-STATIC x x coordinate of centre of stimuli in degrees Response
y y coordinate of centre of stimuli in degrees
other stimulus specific parameters such as size, level,
width, height, pixels (for a general image), duration,
and so on
OPI-PRESENT-KINETIC n number of coordinate pairs in path Response
1 first coordinate in degrees
To second x coordinate in degrees
Tn nth x coordinate in degrees
Y1 first y coordinate in degrees
Yo second y coordinate in degrees
Yn nth y coordinate in degrees
other stimulus specific parameters such as size, level,
etc.
OPI-PRESENT-TEMPORAL =z x coordinate of centre of stimuli in degrees Response
Y y coordinate of centre of stimuli in degrees
n number of cycles in stimuli
lutl some serialised representation of the first LUT
lut2 some serialised representation of the second LUT
lutn some serialised representation of the final LUT
other stimulus specific parameters such as size, level,
width, height, pixels (for a general image), duration,
speed, loop-forever, and so on
OPI-GET-DATA d d indicates type of data required Data
OPI-CLOSE None Close the socket connection None

12

Return Code Data Description

None - No data, just OK or ERR
Response S Seen/not-seen as a true or false
t If s is true, the response time in ms as determined by

the machine. If s is false, this value can be anything.
Perhaps gaze information or error codes if ERR, etc.

Data x Data specific to the call

A.2 An example session

Here is an example session on a hypothetical perimeter.

To server

From Server

Comment

OPI-SET-MODE O
OPI-SET-FIXATION O O 2
OPI-SET-FIXATION O O O
OPI-PRESENT-STATIC -3 9 20

OPI-PRESENT-STATIC -3 9 25

OPI-CLOSE

0K

ERR

0K

0K 1 439

0K 0 -1

0K

Set perimeter into default SAP mode
Fixation marker not allowed

Set cross in centre of screen

Show 20dB at position (—3,9) which is
seen in 439 ms.

Show 25dB at position (—3,9) which is
not seen.

Close socket

13

	Preamble
	Document History
	Document Future
	Conventions
	Usage

	Data Types
	opiStaticStimulus
	opiTemporalStimulus
	opiKineticStimulus

	Functions
	opiInitialize(...)
	opiSetBackground(lum, color, ...)
	opiPresent(stim, ...)
	opiClose(...)
	opiQueryDevice(...)

	Other functionality
	Server side
	OPI Communications Protocol
	An example session

